2022-07-15
Let’s consider a simple model
Let’s consider a simple model
\(F\)
Let’s consider a simple model
\(F\)
\(M\)
Let’s consider a simple model
\(F\)
\(M\)
F | PF | P | PM | |
---|---|---|---|---|
PF | 137.115 | |||
P | 148.423 | 77.341 | ||
PM | 144.548 | 68.203 | 75.732 | |
M | 157.985 | 97.717 | 100.952 | 89.629 |
Trait | Selection | greater | less |
---|---|---|---|
Development Time | Summer-like | 1.00000 | 0.03125* |
Development Time | Fall-like | 0.03125* | 1.00000 |
Viability | Summer-like | 0.03125* | 1.00000 |
Viability | Fall-like | 0.03125 | 1.00000 |
Fecundity | Summer-like | 1.00000 | 0.03125* |
Fecundity | Fall-like | 0.96875 | 0.06250 |
Heat Tolerance (Females) | Summer-like | 1.00000 | 0.03125* |
Heat Tolerance (Females) | Fall-like | 1.00000 | 0.03125* |
Heat Tolerance (Males) | Summer-like | 1.00000 | 0.03125* |
Heat Tolerance (Males) | Fall-like | 1.00000 | 0.03125* |
Starvation Resistance (Females) | Summer-like | 0.78125 | 0.31250* |
Starvation Resistance (Females) | Fall-like | 1.00000 | 0.03125* |
Starvation Resistance (Males) | Summer-like | 0.90625 | 0.15625 |
Starvation Resistance (Males) | Fall-like | 0.93750 | 0.09375 |
Trait | greater | less |
---|---|---|
Development Time | 0.03125* | 1.00000 |
Viability | 0.78125 | 0.31250 |
Fecundity | 0.03125* | 1.00000 |
Heat Tolerance (Females) | 0.93750 | 0.09375 |
Heat Tolerance (Males) | 0.03125* | 1.00000 |
Starvation Resistance (Females) | 1.00000 | 0.03125* |
Starvation Resistance (Males) | 0.40625 | 0.68750 |
Df | Pillai | approx F | num Df | den Df | Pr(>F) | |
---|---|---|---|---|---|---|
Selection | 1 | 0.853 | 111.454 | 6 | 115 | 1.52e-45 *** |
Time | 1 | 0.782 | 68.814 | 6 | 115 | 9.45e-36 *** |
Population | 4 | 0.831 | 5.160 | 24 | 472 | 2.08e-13 *** |
Selection:Time | 1 | 0.853 | 111.454 | 6 | 115 | 1.52e-45 *** |
Selection:Population | 4 | 0.175 | 0.901 | 24 | 472 | 6.01e-01 |
Time:Population | 4 | 0.430 | 2.367 | 24 | 472 | 3.26e-04 *** |
Selection:Time:Population | 4 | 0.175 | 0.901 | 24 | 472 | 6.01e-01 |
Residuals | 120 | NA | NA | NA | NA | NA |
Time | Selection | Population | greater | less |
---|---|---|---|---|
Pre-selection | PF vs PF[sim] | 0.69514 | 0.304863 | |
Pre-selection | PM vs PM[sim] | 0.99832 | 0.001681** | |
Post-selection | Summer-like | PF vs PF[sim] | 0.98807 | 0.011932* |
Post-selection | Summer-like | PM vs PM[sim] | 0.99933 | 0.000671*** |
Post-selection | Fall-like | PF vs PF[sim] | 0.02150* | 0.978500 |
Post-selection | Fall-like | PM vs PM[sim] | 0.00416** | 0.995844 |
Does spatial distance explain the variation in D. melanogaster mitochondrial genome?
How can we infer geographic connectivity between D. melanogaster populations?
Sampling
6 Locations 20 Samples
Outgroups:
2 Locations 5 Samples
Long Range PCR
Covering most of the genes on mtDNA
From ~1500 to ~13000
Sequencing
127 samples
Sample Processing
111 Samples
44 variant sites
54 haplotypes
Population Genetic Analysis
Bayesian Methods with BEAST & BSSVS
To estimate potential migration events
BF | Interpretation | Supports |
---|---|---|
>100 | Extreme support | HA |
30 to 100 | Very strong support | HA |
10 to 30 | Strong support | HA |
3 to 10 | Moderate support | HA |
1 to 3 | Anectodal support | HA |
=1 | No evidence | HA or H0 |
0.3 to 1 | Anectodal support | H0 |
0.1 to 0.3 | Moderate support | H0 |
0.03 to 0.1 | Strong support | H0 |
0.01 to 0.03 | Very strong support | H0 |
<0.01 | Extreme support | H0 |
LOCATION | Zambia | Austria | FL-Mia. | MD-Chu. | PA-Lin. | PA-Ind. | ME-Wel. |
---|---|---|---|---|---|---|---|
ME-Eustis | 0.220 | 0.363 | 0.153 | 237.564 | 1.502 | 0.651 | 1 |
ME-Wells | 0.440 | 0.186 | 0.186 | 21.381 | 0.09 | 0.29 | |
PA-Indian | 0.401 | 0.744 | 237.564 | 9.371 | 0.153 | ||
PA-Linvilla | 0.121 | 237.564 | 0.121 | 0.401 | |||
MD-Churchville | 237.564 | 4.639 | 1 | ||||
FL-Miami | 7.804 | 0.29 | |||||
Austria | 0.401 |
mtDNA is conserved in D. melanogaster, yet the diversity is not low.
Population structure
Geographic connectivity in the mid- and long-range but not short-range
These methods can be used to infer migration rates between populations with temporal sampling.
Dynamically changing environments
Rapid adaptation
Prevalent views:
The role of migration is context dependent
Previous Members
Brisson Lab
Petrov Lab